

WAVES IN THE ION CYCLOTRON FREQUENCY RANGE AT EARTH AND MERCURY

Eun-Hwa Kim

Princeton Plasma Physics Laboratory

In collaboration with

Jay Johnson
Scott Boardsen

James Slavin

Dong-Hun Lee

Hyomin Kim

Princeton Plasma Physics Laboratory

NASA/GSFC, University of Maryland

University of Michigan

Kyung Hee University, Korea

New Jersey Institute of Technology

@ Mercury

 What are the observed ULF waves? How can they propagate to higher magnetic latitude?

@ Earth

How are linearly polarized EMIC waves generated?

@ Mercury & Earth

 Can we use the detected waves as a diagnostic tool to estimate heavy ion density?

PART 1/3: MERCURY'S MAGNETOSPHERE

What are the ULF waves at Mercury? Field line resonance type? Ion Bernstein Waves? or ?

Mercury's magnetosphere

Magnetosphere

- + No atmosphere
- + No ionosphere
- + No plasmasphere
- No co-rotational electric field to trap cold plasma
- + Na exosphere

Plasma conditions

- + Multi-ion
 - H, He from Sun
 - heavy ions
 - : sputtered from surface and ionized
- + Hot plasma

Dimension

- + Small magnetosphere
- : sub-solar point ~ 1.4 R_M
- $+ 1.34 R_{M} \sim 10.8 R_{E}$

Earth

30

vears!

Mercury's magnetosphere

Magnetosphere

- + No atmosphere
- + No ionosphere
- + No plasmasphere
- No co-rotational electric field to trap cold plasma
- + Na exosphere

Plasma conditions

- + Multi-ion
 - H, He from Sun
 - heavy ions
 - : sputtered from surface and ionized
- + Hot plasma

Dimension

- + Small magnetosphere
- : sub-solar point ~ 1.4 R_M
- $+ 1.34 R_{M} \sim 10.8 R_{E}$

Missions

- + Mariner 10, 1973
- three flybys

- three flybys
- orbit, 2011 (period 8hrs, 2012 ~)
- Magnetometer(20 samples/s)
- No electric field measurement

Cusp.

Not Transfer Even.

ULF wave observation

Compressional dominant (75%)

Transverse dominant (25%)

ULF waves at Mercury

MESSENGER

Frequency

-
$$f_{He} < f < f_{H}$$

+ M-LAT : -5° ~ 45°

MLT : $1.3 h \sim 1.7 h$

- + Equator
 - compressional
 - harmonic
- + Off Equator
 - transverse

Statistical Study using MESSENGER

: Percent Occurrence (3/24/11 ~ 09/25/11 : 2.1 Mercury Year)

Sunward

Polarization along magnetic latitude

Ratio of Parallel to Total Power

- + Off Equator
 - $\rightarrow \mathsf{compressional}$
- + Equator
 - → Transverse

Ellipticity

- + Off Equator
 - \rightarrow linear
- + Equator
 - → circular / mixed

ULF waves at Mercury

MESSENGER

Frequency

-
$$f_{He} < f < f_{H}$$

+ M-LAT : -5° ~ 45°

MLT : $1.3 h \sim 1.7 h$

- + Equator
 - compressional
 - harmonic
- Off Equator
 - transverse

Polarization along magnetic latitude

Ratio of Parallel to Total Power

- + Off Equator
 - $\rightarrow \mathsf{compressional}$
- + Equator
 - → Transverse

Ellipticity

- + Off Equator
 - \rightarrow linear
- + Equator
 - → circular / mixed

Summary

: Wave Characteristics

Ion-ion hybrid resonance

between two ion gyrofrequencies

- + Fast compressional waves are converted to "ion-ion hybrid resonance"
- + Mode converted ion-ion hybrid resonance
 - Field-aligned propagation
- Long wavelength in field-aligned direction
 - kperp $>> k_{\parallel}$
 - Transverse waves
 - Linear polarization

→ 2D Full wave calculations has been performed in Mercury's magnetosphere

FW: Fast compressional wave

IIH : Mode-converted Ion-ion hybrid resonant wave

Full wave calculations (cold)

H⁺ 85% Na⁺ 15%

+ $B_{0 \text{ (surface)}}$: 3 X 10^{-7} T

 $+ N_e : 3 / cm^3$

+ $f = 0.8 f_{ci}$ at L=2 (equator)

H⁺ 85% He⁺ 7.5% Na⁺ 7.5%

Full wave calculations

Full wave calculations

--- ω_{ci} or ω_{cHe}

 $-\omega_{s=0}$ IIH Cutoff

---- $\omega_{L=0}$ FW Cutoff (equator)

H⁺ 85% Na⁺ 15%

H⁺ 85% He⁺ 7.5% Na⁺ 7.5%

-0.005

10 12

L (radial distance)

Poynting Flux

Guided by Magnetic field!

Comparison with observation

cf. Ion Bernstein Waves : Ray Tracing

$\beta = 0.135$

+ Ray tracing

- bi-modal structure
- Weak compression and strong growth near equator
- Highly compression near |4° - 7°|
- $+ \beta = 0.051$
- also shows only Type A

It could explain MESSENGER because it occurs in various beta range.

cf. Ion Bernstein Waves : Ray Tracing

$\beta = 0.135$

+ Ray tracing

- bi-modal structure
- Weak compression and strong growth near equator
- Highly compression near
 |4° 7°|

$+ \beta = 0.051$

- also shows only Type A

It could explain MESSENGER because it occurs in various beta range.

cf. Ion Bernstein Waves

: Comparison with observation

Comparison

Mode Conversion in hot plasma

Dispersion relation at Mercury

- using WHAMP
- + Parameters
 - $-B_0 = 90 \text{ nT}$
 - $-N_{e} = 3 \text{ cm}^{-3}$
 - $K_{||} = 2\pi/(1.5R_{M})$
 - $-T_{\perp}^{"}/T_{||}=1$
 - T_{ion}=1 keV
 - $-T_{e} = 0.13 \text{ keV}$
 - $-\omega = 0.7 \omega_{ci}$
 - No cold plasma
- + At Mercury's hot plasmas, mode conversion from fast compressional waves to ion-Bernstein waves occurs at the ion-ion hybrid resonance ← Similar to laboratory plasma

IBW: Ion Bernstein waves

PART2:
EARTH'S
MAGNETOSPHERE

Linear Polarization EMIC waves & IIH resonance

EMIC waves at Earth

Left-handed Polarization

+ Ion cyclotron instability by proton temperature anisotropic

Linear Polarization

+ mode conversion at the IIH resonance [Lee et al., 2008]

EMIC waves at Earth

Linear Polarization

+ Linearly Polarized EMIC waves are observed in a wide range of L-shell

Issue:

How linear polarization is dominant? How such EMIC waves can be generated?

Full wave calculations at Earth

: Mode converted waves -> linearly polarization

Mode converted waves → linearly polarization

Mode converted waves → linearly polarization

→ localized

- $f_{He+} < f < f_{H+}$
- Wave Dispersion $n_{||}^2 = S$
- Cut offs occur at S = 0 (Buchsbaum resonance)
- IIH resonances are localized between two Buchsbaum resonances

[e.g., Johnson et al.,

Application: Inferring heavy ion density using EMIC/ULF waves

Can detected ULF waves be a diagnostic tool to estimate heavy ion density ratio?

Absorption of fast compressional waves

= Generation of linear polarization waves

Key point : width

Wave absorption at Earth

: adopting simple density model

IIH resonance frequencycrossover frequency

Wave absorption at Earth

: adopting various density model

→ η_{He} can be inferred from the observed EMIC waves at geosynchronous orbit, which is robust for typical magnetospheric parameters.

Heavy Ion Density Estimation at Earth : Geosynchronous orbit L ~ 6.6

Wave absorption at Mercury

: adopting simple density model

at the IIH or Alfven resonance **Propagation** Mode converted waves Field-aligned (externally driven incoming waves) Fast compressional mode

Linear Polarization

200

400

600

6 8

FLR resonance at Earth (Alfven resonance : global)

FLR at Mercury (IIH resonance : global)

at the IIH or Alfven resonance Mode converted waves (externally driven incoming waves) Fast compressional mode

EMIC waves at Earth (IIH resonance : localized)

FLR at Mercury
(IIH resonance : global)

END

Observed linear polarized EMIC waves (IIH resonance) PPP can be used to infer the heavy ion density.

Fast mode absorption at the IIH resonance depends on wave frequency ω , azimuthal (k_y) , field-aligned wave numbers $(k_{||})$, heavy ion density ratio, and \mathbf{B}_0 .

- IIH resonance has been suggested to estimate heavy ion density [Kim et al., 2008, Lee et al., 2008]
- The sharply peaked dependence of mode conversion on ω with observed **B**₀ makes it possible to estimate heavy ion density ratio from the detected EMIC waves

[Kazakov and Fulop, 2013]

Compressibility $\delta b_{||}/\delta b$

Comparison with observation

Summary 1: Mercury

1. Reproduce ULF waves at Mercury

- Full wave model
 - Mode conversion from incoming compressional waves to ionion hybrid resonance waves
- Ray tracing Ion Bernstein waves

2. Both wave calculations shows

- Magnetic compressional component is dominant near magnetic equator
- Magnetic transverse component is dominant off equator
- 3. Which is correct? Long wavelength or short wavelength?
- Several wave modes can be existed, such as short wave length
 IBW and long wavelength mode-converted waves